Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612728

RESUMO

Interaction with the environment appears necessary for the maturation of sensorimotor and cognitive functions in early life. In rats, a model of sensorimotor restriction (SMR) from postnatal day 1 (P1) to P28 has shown that low and atypical sensorimotor activities induced the perturbation of motor behavior due to muscle weakness and the functional disorganization of the primary somatosensory and motor cortices. In the present study, our objective was to understand how SMR affects the muscle-brain dialogue. We focused on irisin, a myokine secreted by skeletal muscles in response to exercise. FNDC5/irisin expression was determined in hindlimb muscles and brain structures by Western blotting, and irisin expression in blood and cerebrospinal fluid was determined using an ELISA assay at P8, P15, P21 and P28. Since irisin is known to regulate its expression, Brain-Derived Neurotrophic Factor (BDNF) levels were also measured in the same brain structures. We demonstrated that SMR increases FNDC5/irisin levels specifically in the soleus muscle (from P21) and also affects this protein expression in several brain structures (as early as P15). The BDNF level was increased in the hippocampus at P8. To conclude, SMR affects FNDC5/irisin levels in a postural muscle and in several brain regions and has limited effects on BDNF expression in the brain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fibronectinas , Animais , Ratos , Encéfalo , Músculo Esquelético , Cognição
2.
Brain Res ; 1828: 148773, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244757

RESUMO

Childhood is a period of construction of the organism, during which interactions with the environment and regular physical activity are necessary for the maturation of the neuronal networks. An atypical sensorimotor activity during childhood (due to bed-rest or neurodevelopmental disorders) impacts the development of the neuromuscular system. A model of sensorimotor restriction (SMR) developed in rats has shown that casting pups' hind limbs from postnatal day 1 (P1) to P28 induced a severe perturbation of motor behavior, due to muscle weakness as well as disturbances within the central nervous system. In the present study, our objective was to determine whether SMR affects the early postnatal ontogenesis. We explored the neuromuscular development through the determination of the age for achievement of the main neurodevelopmental reflexes, which represent reliable indicators of neurological and behavioral development. We also evaluated the maturation of postural control. Our results demonstrate that SMR induces a delay in the motor development, illustrated by a several days delay in the acquisition of a mature posture and in the acquisition reflexes: hind limb grasping, righting, hind limb placing, cliff avoidance, negative geotaxis. In conclusion, impaired physical activity and low interactions with environment during early development result in altered maturation of the nervous system.


Assuntos
Transtornos do Neurodesenvolvimento , Reflexo , Humanos , Ratos , Animais , Neurônios , Equilíbrio Postural , Sistema Nervoso Central , Animais Recém-Nascidos
4.
Sci Rep ; 13(1): 3841, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882440

RESUMO

Low birth weight (LBW) increases the risk of neurodevelopmental disorders (NDDs) such as attention-deficit/hyperactive disorder and autism spectrum disorder, as well as cerebral palsy, for which no prophylactic measure exists. Neuroinflammation in fetuses and neonates plays a major pathogenic role in NDDs. Meanwhile, umbilical cord-derived mesenchymal stromal cells (UC-MSCs) exhibit immunomodulatory properties. Therefore, we hypothesized that systemic administration of UC-MSCs in the early postnatal period may attenuate neuroinflammation and thereby prevent the emergence of NDDs. The LBW pups born to dams subjected to mild intrauterine hypoperfusion exhibited a significantly lesser decrease in the monosynaptic response with increased frequency of stimulation to the spinal cord preparation from postnatal day 4 (P4) to P6, suggesting hyperexcitability, which was improved by intravenous administration of human UC-MSCs (1 × 105 cells) on P1. Three-chamber sociability tests at adolescence revealed that only LBW males exhibited disturbed sociability, which tended to be ameliorated by UC-MSC treatment. Other parameters, including those determined via open-field tests, were not significantly improved by UC-MSC treatment. Serum or cerebrospinal fluid levels of pro-inflammatory cytokines were not elevated in the LBW pups, and UC-MSC treatment did not decrease these levels. In conclusion, although UC-MSC treatment prevents hyperexcitability in LBW pups, beneficial effects for NDDs are marginal.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Mesenquimais , Transtornos do Neurodesenvolvimento , Adolescente , Humanos , Masculino , Recém-Nascido , Transtorno do Espectro Autista/terapia , Doenças Neuroinflamatórias , Cordão Umbilical , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/prevenção & controle
5.
Front Physiol ; 13: 786714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250609

RESUMO

Prenatal hypoxia is a recognised risk factor for neurodevelopmental disorders associated with both membrane proteins involved in neuron homeostasis, e.g., chloride (Cl-) cotransporters, and alterations in brain neurotransmitter systems, e.g., catecholamines, dopamine, and GABA. Our study aimed to determine whether prenatal hypoxia alters central respiratory drive by disrupting the development of Cl- cotransporters KCC2 and NKCC1. Cl- homeostasis seems critical for the strength and efficiency of inhibition mediated by GABAA and glycine receptors within the respiratory network, and we searched for alterations of GABAergic and glycinergic respiratory influences after prenatal hypoxia. We measured fictive breathing from brainstem in ex vivo preparations during pharmacological blockade of KCC2 and NKCC1 Cl- cotransporters, GABAA, and glycine receptors. We also evaluated the membrane expression of Cl- cotransporters in the brainstem by Western blot and the expression of Cl- cotransporter regulators brain-derived neurotrophic factor (BDNF) and calpain. First, pharmacological experiments showed that prenatal hypoxia altered the regulation of fictive breathing by NKCC1 and KCC2 Cl- cotransporters, GABA/GABAA, and glycin. NKCC1 inhibition decreased fictive breathing at birth in control mice while it decreased at 4 days after birth in pups exposed to prenatal hypoxia. On the other hand, inhibition of KCC2 decreased fictive breathing 4 days after birth in control mice without any change in prenatal hypoxia pups. The GABAergic system appeared to be more effective in prenatal hypoxic pups whereas the glycinergic system increased its effectiveness later. Second, we observed a decrease in the expression of the Cl- cotransporter KCC2, and a decrease with age in NKCC1, as well as an increase in the expression of BDNF and calpain after prenatal hypoxia exposure. Altogether, our data support the idea that prenatal hypoxia alters the functioning of GABAA and glycinergic systems in the respiratory network by disrupting maturation of Cl- homeostasis, thereby contributing to long-term effects by disrupting ventilation.

6.
Exp Neurol ; 347: 113886, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624327

RESUMO

Children with low physical activity and interactions with environment experience atypical sensorimotor development and maturation leading to anatomical and functional disorganization of the sensorimotor circuitry and also to enduring altered motor function. Previous data have shown that postnatal movement restriction in rats results in locomotor disturbances, functional disorganization and hyperexcitability of the hind limb representations in the somatosensory and motor cortices, without apparent brain damage. Due to the reciprocal interplay between the nervous system and muscle, it is difficult to determine whether muscle alteration is the cause or the result of the altered sensorimotor behavior (Canu et al., 2019). In the present paper, our objectives were to evaluate the impact of early movement restriction leading to sensorimotor restriction (SMR) during development on the postural soleus muscle and on sensorimotor performance in rats, and to determine whether changes were reversed when typical activity was resumed. Rats were submitted to SMR by hind limb immobilization for 16 h / day from birth to postnatal day 28 (PND28). In situ isometric contractile properties of soleus muscle, fiber cross sectional area (CSA) and myosin heavy chain content (MHC) were studied at PND28 and PND60. In addition, the motor function was evaluated weekly from PND28 to PND60. At PND28, SMR rats presented a severe atrophy of soleus muscle, a decrease in CSA and a force loss. The muscle maturation appeared delayed, with persistence of neonatal forms of MHC. Changes in kinetic properties were moderate or absent. The Hoffmann reflex provided evidence for spinal hyperreflexia and signs of spasticity. Most changes were reversed at PND60, except muscle atrophy. Functional motor tests that require a good limb coordination, i.e. rotarod and locomotion, showed an enduring alteration related to SMR, even after one month of 'typical' activity. On the other hand, paw withdrawal test and grip test were poorly affected by SMR whereas spontaneous locomotor activity increased over time. Our results support the idea that proprioceptive feedback is at least as important as the amount of motor activity to promote a typical development of motor function. A better knowledge of the interplay between hypoactivity, muscle properties and central motor commands may offer therapeutic perspectives for children suffering from neurodevelopmental disorders.


Assuntos
Retroalimentação Sensorial/fisiologia , Elevação dos Membros Posteriores/efeitos adversos , Atividade Motora/fisiologia , Músculo Esquelético/fisiopatologia , Animais , Feminino , Masculino , Movimento/fisiologia , Atrofia Muscular/patologia , Ratos , Ratos Sprague-Dawley
7.
Ann Phys Rehabil Med ; 63(5): 422-430, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31756523

RESUMO

Cerebral palsy (CP) is a complex syndrome of various sensory, motor and cognitive deficits. Its prevalence has recently decreased in some developed countries and its symptoms have also shifted since the 1960s. From the 1990s, CP has been associated with prematurity, but recent epidemiologic studies show reduced or absent brain damage, which recapitulates developmental coordination disorder (DCD). In previous studies, we developed a rat model based on mild intrauterine hypoperfusion (MIUH) that recapitulated the diversity of symptoms observed in preterm survivors. Briefly, MIUH led to early inflammatory processes, diffuse brain damage, minor locomotor deficits, musculoskeletal pathologies, neuroanatomical and functional disorganization of the primary somatosensory (S1) cortex but not in the motor cortex (M1), delayed sensorimotor reflexes, spontaneous hyperactivity, deficits in sensory information processing, and memory and learning impairments in adult rats. Adult MIUH rats also exhibited changes in muscle contractile properties and phenotype, enduring hyperreflexia and spasticity, as well as hyperexcitability in the sensorimotor cortex. We recently developed a rat model of DCD based on postnatal sensorimotor restriction (SMR) without brain damage. Briefly, SMR led to digitigrade locomotion (i.e., "toe walking") related to ankle-knee overextension, degraded musculoskeletal tissues (e.g., gastrocnemius atrophy), and lumbar hyperreflexia. The postnatal SMR then led to secondary degradation of the hind-limb maps in S1 and M1 cortices, altered cortical response properties and cortical hyperexcitability, but no brain damage. Thus, our 2 rat models appear to recapitulate the diversity of symptoms ranging from CP to DCD and contribute to understanding the emergence and mechanisms underlying the corresponding neurodevelopmental disorders. These preclinical models seem promising for testing strategies of rehabilitation based on both physical and cognitive training to promote adaptive brain plasticity and to improve physical body conditions.


Assuntos
Paralisia Cerebral , Transtornos das Habilidades Motoras , Córtex Sensório-Motor , Animais , Paralisia Cerebral/etiologia , Marcha , Humanos , Locomoção , Ratos
8.
Ann Phys Rehabil Med ; 62(2): 122-127, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30394346

RESUMO

Activity-dependent processes addressing the central nervous system (CNS) and musculoskeletal structures are critical for maintaining motor performance. Chronic reduction in activity, whether due to a sedentary lifestyle or extended bed rest, results in impaired performance in motor tasks and thus decreased quality of life. In the first part of this paper, we give a narrative review of the effects of hypoactivity on the neuromuscular system and behavioral outcomes. Motor impairments arise from a combination of factors including altered muscle properties, impaired afferent input, and plastic changes in neural structure and function throughout the nervous system. There is a reciprocal interplay between the CNS and muscle properties, and these sensorimotor loops are essential for controlling posture and movement. As a result, patients under hypoactivity experience a self-perpetuating cycle, in with sedentarity leading to decreased motor activity and thus a progressive worsening of a situation, and finally deconditioning. Various rehabilitation strategies have been studied to slow down or reverse muscle alteration and altered motor performance. In the second part of the paper, we review representative protocols directed toward the muscle, the sensory input and/or the cerebral cortex. Improving an understanding of the loss of motor function under conditions of disuse (such as extended bed rest) as well as identifying means to slow this decline may lead to therapeutic strategies to preserve quality of life for a range of individuals. The most efficient strategies seem multifactorial, using a combination of approaches targeting different levels of the neuromuscular system.


Assuntos
Adaptação Fisiológica/fisiologia , Hipocinesia/fisiopatologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiopatologia , Envelhecimento/fisiologia , Repouso em Cama/efeitos adversos , Humanos , Hipocinesia/etiologia
9.
Sci Rep ; 8(1): 16328, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397222

RESUMO

Motor control and body representations in the central nervous system are built, i.e., patterned, during development by sensorimotor experience and somatosensory feedback/reafference. Yet, early emergence of locomotor disorders remains a matter of debate, especially in the absence of brain damage. For instance, children with developmental coordination disorders (DCD) display deficits in planning, executing and controlling movements, concomitant with deficits in executive functions. Thus, are early sensorimotor atypicalities at the origin of long-lasting abnormal development of brain anatomy and functions? We hypothesize that degraded locomotor outcomes in adulthood originate as a consequence of early atypical sensorimotor experiences that induce developmental disorganization of sensorimotor circuitry. We showed recently that postnatal sensorimotor restriction (SMR), through hind limb immobilization from birth to one month, led to enduring digitigrade locomotion with ankle-knee overextension, degraded musculoskeletal tissues (e.g., gastrocnemius atrophy), and clear signs of spinal hyperreflexia in adult rats, suggestive of spasticity; each individual disorder likely interplaying in self-perpetuating cycles. In the present study, we investigated the impact of postnatal SMR on the anatomical and functional organization of hind limb representations in the sensorimotor cortex and processes representative of maladaptive neuroplasticity. We found that 28 days of daily SMR degraded the topographical organization of somatosensory hind limb maps, reduced both somatosensory and motor map areas devoted to the hind limb representation and altered neuronal response properties in the sensorimotor cortex several weeks after the cessation of SMR. We found no neuroanatomical histopathology in hind limb sensorimotor cortex, yet increased glutamatergic neurotransmission that matched clear signs of spasticity and hyperexcitability in the adult lumbar spinal network. Thus, even in the absence of a brain insult, movement disorders and brain dysfunction can emerge as a consequence of reduced and atypical patterns of motor outputs and somatosensory feedback that induce maladaptive neuroplasticity. Our results may contribute to understanding the inception and mechanisms underlying neurodevelopmental disorders, such as DCD.


Assuntos
Adaptação Fisiológica/fisiologia , Elevação dos Membros Posteriores/efeitos adversos , Transtornos dos Movimentos/fisiopatologia , Plasticidade Neuronal , Córtex Sensório-Motor/fisiopatologia , Animais , Feminino , Elevação dos Membros Posteriores/fisiologia , Masculino , Transtornos dos Movimentos/patologia , Neurônios/patologia , Análise de Componente Principal , Ratos
10.
Front Neurol ; 9: 423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973904

RESUMO

Intrauterine ischemia-hypoxia is detrimental to the developing brain and leads to white matter injury (WMI), encephalopathy of prematurity (EP), and often to cerebral palsy (CP), but the related pathophysiological mechanisms remain unclear. In prior studies, we used mild intrauterine hypoperfusion (MIUH) in rats to successfully reproduce the diversity of clinical signs of EP, and some CP symptoms. Briefly, MIUH led to inflammatory processes, diffuse gray and WMI, minor locomotor deficits, musculoskeletal pathologies, neuroanatomical and functional disorganization of the primary somatosensory and motor cortices, delayed sensorimotor reflexes, spontaneous hyperactivity, deficits in sensory information processing, memory and learning impairments. In the present study, we investigated the early and long-lasting mechanisms of pathophysiology that may be responsible for the various symptoms induced by MIUH. We found early hyperreflexia, spasticity and reduced expression of KCC2 (a chloride cotransporter that regulates chloride homeostasis and cell excitability). Adult MIUH rats exhibited changes in muscle contractile properties and phenotype, enduring hyperreflexia and spasticity, as well as hyperexcitability in the sensorimotor cortex. Taken together, these results show that reduced expression of KCC2, lumbar hyperreflexia, spasticity, altered properties of the soleus muscle, as well as cortical hyperexcitability may likely interplay into a self-perpetuating cycle, leading to the emergence, and persistence of neurodevelopmental disorders (NDD) in EP and CP, such as sensorimotor impairments, and probably hyperactivity, attention, and learning disorders.

11.
Brain Pathol ; 28(6): 889-901, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29437246

RESUMO

Motor control and body representation in the central nervous system (CNS) as well as musculoskeletal architecture and physiology are shaped during development by sensorimotor experience and feedback, but the emergence of locomotor disorders during maturation and their persistence over time remain a matter of debate in the absence of brain damage. By using transient immobilization of the hind limbs, we investigated the enduring impact of postnatal sensorimotor restriction (SMR) on gait and posture on treadmill, age-related changes in locomotion, musculoskeletal histopathology and Hoffmann reflex in adult rats without brain damage. SMR degrades most gait parameters and induces overextended knees and ankles, leading to digitigrade locomotion that resembles equinus. Based on variations in gait parameters, SMR appears to alter age-dependent plasticity of treadmill locomotion. SMR also leads to small but significantly decreased tibial bone length, chondromalacia, degenerative changes in the knee joint, gastrocnemius myofiber atrophy and muscle hyperreflexia, suggestive of spasticity. We showed that reduced and atypical patterns of motor outputs, and somatosensory inputs and feedback to the immature CNS, even in the absence of perinatal brain damage, play a pivotal role in the emergence of movement disorders and musculoskeletal pathologies, and in their persistence over time. Understanding how atypical sensorimotor development likely contributes to these degradations may guide effective rehabilitation treatments in children with either acquired (ie, with brain damage) or developmental (ie, without brain injury) motor disabilities.


Assuntos
Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Locomoção , Músculo Esquelético/fisiopatologia , Fatores Etários , Animais , Peso Corporal , Paralisia Cerebral , Teste de Esforço , Feminino , Marcha , Elevação dos Membros Posteriores , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo Anormal
12.
J Vis Exp ; (131)2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-29364276

RESUMO

Intrauterine hypoperfusion/ischemia is one of the major causes of intrauterine/fetal growth restriction, preterm birth, and low birth weight. Most studies of this phenomenon have been performed in either models with severe intrauterine ischemia or models with gradient degree of intrauterine hypoperfusion. No study has been performed in a model on uniform mild intrauterine hypoperfusion (MIUH). Two models have been used for studies of MIUH: a model based on suture ligation of either side of the arterial arcade formed with the uterine and ovarian arteries, and a transient model based on clipping the bilateral ovarian arteries and aorta having patency. Those two rodent models of MIUH have some limitations, e.g., not all fetuses are subjected to MIUH, depending on their position in the uterine horn. In our MIUH model, all fetuses are subjected to a comparable level of intrauterine hypoperfusion. MIUH was achieved by mild stenosis of all four arteries feeding the uterus, i.e., the bilateral uterine and ovarian arteries. Arterial stenosis was induced by metal microcoils wrapped around the feeding arteries. Producing arterial stenosis with microcoils allowed us to control, optimize, and reproduce decreased blood flow with very little inter-animal variability and a low mortality rate, thus enabling accurate evaluation. When microcoils with an inner diameter of 0.24 mm were used, the blood flow in both the placenta and fetus was mildly decreased (approximately 30% from the pre-stenosis level in the placenta). The offspring of our MIUH model clearly demonstrates long-lasting alterations in neurological, neuroanatomical and behavioral test results.


Assuntos
Retardo do Crescimento Fetal/diagnóstico , Placenta/irrigação sanguínea , Útero/irrigação sanguínea , Animais , Constrição Patológica/patologia , Feminino , Gravidez , Ratos , Útero/fisiologia
13.
Exp Neurol ; 299(Pt A): 1-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917641

RESUMO

Rats with complete spinal cord transection (SCT) can recover hindlimb locomotor function under strategies combining exercise training and 5-HT agonist treatment. This recovery is expected to result from structural and functional re-organization within the spinal cord below the lesion. To begin to understand the nature of this reorganization, we examined synaptic changes to identified gastrocnemius (GS) or tibialis anterior (TA) motoneurons (MNs) in SCT rats after a schedule of early exercise training and delayed 5-HT agonist treatment. In addition, we analyzed changes in distribution and number of lumbar interneurons (INs) presynaptic to GS MNs using retrograde transneuronal transport of rabies virus. In SCT-untrained rats, we found few changes in the density and size of inhibitory and excitatory inputs impinging on cell bodies of TA and GS MNs compared to intact rats, whereas there was a marked trend for a reduction in the number of premotor INs connected to GS MNs. In contrast, after training of SCT rats, a significant increase of the density of GABAergic and glycinergic axon terminals was observed on both GS and TA motoneuronal cell bodies, as well as of presynaptic P-boutons on VGLUT1 afferents. Despite these changes in innervation the number of premotor INs connected to GS MNs was similar to control values although some new connections to MNs were observed. These results suggest that adaptation of gait patterns in SCT-trained rats was accompanied by changes in the innervation of lumbar MNs while the distribution of the spinal premotor circuitry was relatively preserved.


Assuntos
Região Lombossacral/inervação , Neurônios Motores/patologia , Rede Nervosa/patologia , Condicionamento Físico Animal , Traumatismos da Medula Espinal/fisiopatologia , Animais , Feminino , Glicina/metabolismo , Membro Posterior/fisiologia , Interneurônios/patologia , Locomoção/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Terminações Pré-Sinápticas/patologia , Vírus da Raiva , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Agonistas do Receptor de Serotonina/uso terapêutico , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Sci Rep ; 6: 39377, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996031

RESUMO

Severe intrauterine ischemia is detrimental to the developing brain. The impact of mild intrauterine hypoperfusion on neurological development, however, is still unclear. We induced mild intrauterine hypoperfusion in rats on embryonic day 17 via arterial stenosis with metal microcoils wrapped around the uterine and ovarian arteries. All pups were born with significantly decreased birth weights. Decreased gray and white matter areas were observed without obvious tissue damage. Pups presented delayed newborn reflexes, muscle weakness, and altered spontaneous activity. The levels of proteins indicative of inflammation and stress in the vasculature, i.e., RANTES, vWF, VEGF, and adiponectin, were upregulated in the placenta. The levels of mRNA for proteins associated with axon and astrocyte development were downregulated in fetal brains. The present study demonstrates that even mild intrauterine hypoperfusion can alter neurological development, which mimics the clinical signs and symptoms of children with neurodevelopmental disorders born prematurely or with intrauterine growth restriction.


Assuntos
Doenças do Prematuro/patologia , Transtornos do Neurodesenvolvimento/patologia , Animais , Animais Recém-Nascidos , Feminino , Retardo do Crescimento Fetal/patologia , Inflamação/patologia , Parto/fisiologia , Placenta/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , Reprodução/fisiologia , Útero/patologia , Substância Branca/patologia
15.
Dev Med Child Neurol ; 58 Suppl 4: 7-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27027601

RESUMO

Cerebral palsy (CP) describes a group of neurodevelopmental disorders of posture and movement that are frequently associated with sensory, behavioral, and cognitive impairments. The clinical picture of CP has changed with improved neonatal care over the past few decades, resulting in higher survival rates of infants born very preterm. Children born preterm seem particularly vulnerable to perinatal hypoxia-ischemia insults at birth. Animal models of CP are crucial for elucidating underlying mechanisms and for development of strategies of neuroprotection and remediation. Most animal models of CP are based on hypoxia-ischemia around the time of birth. In this review, we focus on alterations of brain organization and functions, especially sensorimotor changes, induced by prenatal ischemia in rodents and rabbits, and relate these alterations to neurodevelopmental disorders found in preterm children. We also discuss recent literature that addresses the relationship between neural and myelin plasticity, as well as possible contributions of white matter injury to the emergence of brain dysfunctions induced by prenatal ischemia.


Assuntos
Paralisia Cerebral , Hipóxia-Isquemia Encefálica , Doenças do Prematuro , Lesões Pré-Natais , Substância Branca , Animais , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Doenças do Prematuro/patologia , Doenças do Prematuro/fisiopatologia , Gravidez , Lesões Pré-Natais/patologia , Lesões Pré-Natais/fisiopatologia , Substância Branca/patologia , Substância Branca/fisiopatologia
16.
Behav Brain Res ; 232(1): 233-44, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22521835

RESUMO

Early brain damage, such as white matter damage (WMD), resulting from perinatal hypoxia-ischemia in preterm and low birth weight infants represents a high risk factor for mortality and chronic disabilities, including sensory, motor, behavioral and cognitive disorders. In previous studies, we developed a model of WMD based on prenatal ischemia (PI), induced by unilateral ligation of uterine artery at E17 in pregnant rats. We have shown that PI reproduced some of the main deficits observed in preterm infants, such as white and gray matter damage, myelination deficits, locomotor, sensorimotor, and short-term memory impairments, as well as related musculoskeletal and neuroanatomical histopathologies [1-3]. Here, we determined the deleterious impact of PI on several behavioral and cognitive abilities in adult rats, as well as on the neuroanatomical substratum in various related brain areas. Adult PI rats exhibited spontaneous exploratory and motor hyperactivity, deficits in information encoding, and deficits in short- and long-term object memory tasks, but no impairments in spatial learning or working memory in watermaze tasks. These results were in accordance with white matter injury and damage in the medial and lateral entorhinal cortices, as detected by axonal degeneration, astrogliosis and neuronal density. Although there was astrogliosis and axonal degeneration in the fornix, hippocampus and cingulate cortex, neuronal density in the hippocampus and cingulate cortex was not affected by PI. Levels of spontaneous hyperactivity, deficits in object memory tasks, neuronal density in the medial and lateral entorhinal cortices, and astrogliosis in the fornix correlated with birth weight in PI rats. Thus, this rodent model of WMD based on PI appears to recapitulate the main neurobehavioral and neuroanatomical human deficits often observed in preterm children with a perinatal history of ischemia.


Assuntos
Comportamento Animal/fisiologia , Isquemia Encefálica/patologia , Isquemia Encefálica/psicologia , Encéfalo/patologia , Cognição/fisiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Dano Encefálico Crônico/patologia , Sinais (Psicologia) , Feminino , Fluoresceínas , Gliose/patologia , Imuno-Histoquímica , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Memória de Longo Prazo/fisiologia , Atividade Motora/fisiologia , Compostos Orgânicos , Gravidez , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/fisiologia , Reversão de Aprendizagem/fisiologia , Percepção Espacial/fisiologia
18.
Brain Pathol ; 22(1): 1-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21615591

RESUMO

Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in open-field test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD.


Assuntos
Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Neurônios/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Sintomas Comportamentais/patologia , Sintomas Comportamentais/fisiopatologia , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Neurônios/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley
19.
Int J Dev Neurosci ; 29(6): 593-607, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21382470

RESUMO

Early brain injury including white matter damage (WMD) appears strongly correlated to perinatal hypoxia-ischemia and adverse neurological outcomes in preterm survivors. Indeed, WMD has been widely associated with subtle to major motor disturbances, sensory, behavioral and cognitive impairments in preterm infants who afterward develop cerebral palsy (CP). Prenatal ischemia (PI) has been shown to reproduce the main features of WMD observed in preterm infants. The present study was aimed at determining in adult rats the impact of PI on brain axons, musculoskeletal histology and locomotor activity. PI was induced by unilateral intrauterine artery ligation at E17 in pregnant rats. We found axonal degeneration and reactive astrogliosis in several white matter regions of adult PI rats. We found mild myopathic and secondary joint changes, including increased variability in myofiber size in several hind limb muscles, decreased myofibers numbers but increased Pax 7 cells and myofiber size in the gastrocnemius, and mild knee and ankle chondromalacia. Although treadmill locomotion appeared normal, several kinematic parameters, such as stride length, amplitude, velocity and leg joint angles were altered in adult PI rats compared to shams. Using intra- and inter-group variability of kinematic parameters, PI seemed to impair the maturation of locomotion on the treadmill. In addition, PI rats exhibited spontaneous hyperactivity in open-field test. Musculoskeletal changes appeared concomitant with mild impairments in gait and posture. Our rodent model of WMD based on PI reproduces the mild motor deficits and musculoskeletal changes observed in many preterm infants with a perinatal history of hypoxia-ischemia, and contributes towards a better understanding of the interplay between brain injury, musculoskeletal histopathology and gait disturbances encountered subsequently.


Assuntos
Hipóxia-Isquemia Encefálica/complicações , Locomoção/fisiologia , Atividade Motora , Fibras Nervosas Mielinizadas/patologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Paralisia Cerebral/etiologia , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Modelos Animais de Doenças , Feminino , Marcha , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Músculo Esquelético/patologia , Postura , Gravidez , Ratos , Ratos Sprague-Dawley
20.
Exp Neurol ; 221(1): 186-97, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19896483

RESUMO

After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capable of substantial reorganizations that can underlie functional recovery. Most studies have focused on intraspinal reorganizations after SCI and not on the correlative cortical remodeling. Yet, differential studies of neural correlates of the recovery of sensory and motor abilities may be conducted by segregating motor and somatosensory representations in distinct and topologically organized primary cortical areas. This study was aimed at evaluating the effects of a cervical (C4-C5) spinal cord hemisection on sensorimotor performances and electrophysiological maps in primary somatosensory (S1) and motor (M1) cortices in adult rats. After SCI, an enduring loss of the affected forepaw tactile sensitivity was paralleled by the abolishment of somatosensory evoked responses in the deprived forepaw area within the S1 cortex. In contrast, severe motor deficits in unilateral forelimb were partially restored over the first postoperative month, despite remnant deficits in distal movement. The overall M1 map size was drastically reduced in SCI rats relative to intact rats. In the remaining M1 map, the shoulder and elbow movements were over-represented, consistent with the behavioral recovery of proximal joint movements in almost all rats. By contrast, residual wrist representations were observed in M1 maps of half of the rats that did not systematically correlate with a behavioral recovery of these joint movements. This study highlights the differential potential of ascending and descending pathways to reorganize after SCI.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/patologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Tato/fisiologia , Animais , Vértebras Cervicais/patologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Lateralidade Funcional/fisiologia , Força da Mão/fisiologia , Masculino , Movimento/fisiologia , Estimulação Física/métodos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...